Well-posedness of water wave model with viscous effects
نویسندگان
چکیده
منابع مشابه
The Compressible Viscous Surface-Internal Wave Problem: Local Well-Posedness
This paper concerns the dynamics of two layers of compressible, barotropic, viscous fluid lying atop one another. The lower fluid is bounded below by a rigid bottom, and the upper fluid is bounded above by a trivial fluid of constant pressure. This is a free boundary problem: the interfaces between the fluids and above the upper fluid are free to move. The fluids are acted on by gravity in the ...
متن کاملWell-posedness of the Water-wave Problem with Surface Tension
In this paper, we prove the local well-posedness of the water wave problem with surface tension in the case of finite depth by working in the Eulerian setting. For the flat bottom, as surface tension tends to zero, the solution of the water wave problem with surface tension converges to the solution of the water wave problem without surface tension.
متن کاملOn the Well-Posedness for the Viscous Shallow Water Equations
In this paper, we prove the existence and uniqueness of the solutions for the 2D viscous shallow water equations with low regularity assumptions on the initial data as well as the initial height bounded away from zero.
متن کاملWell–Posedness of a Model for Water Waves with Viscosity
The water wave equations of ideal free–surface fluid mechanics are a fundamental model of open ocean movements with a surprisingly subtle well–posedness theory. In consequence of both theoretical and computational difficulties with the full water wave equations, various asymptotic approximations have been proposed, analysed and used in practical situations. In this essay, we establish the well–...
متن کاملLocal Well-posedness of the Viscous Surface Wave Problem without Surface Tension
We consider a viscous fluid of finite depth below the air, occupying a threedimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The domain is allowed to have a horizontal cross-section that is either periodic or infinite in extent. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2020
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/15219